[特邀报告]Genetic correlation analysis of complex traits

Genetic correlation analysis of complex traits
特邀报告

报告开始:5月14日 15:40:00 (Asia/Shanghai)

报告时间:20min

所在会议:[S2] 分会场二 [S2-2] 高通量测序与生命组学大数据

摘要
Genome wide association analysis (GWAS) has provided numerous insights into the genetic etiology of complex diseases. In this talk, I will first introduce genetic correlation analysis of complex traits, and then introduce LOGODetect, a powerful and efficient statistical method to identify small genome segments harboring local genetic correlation signals. LOGODetect automatically identifies genetic regions showing consistent associations with multiple phenotypes through a scan statistic approach. It uses summary association statistics from genome-wide association studies (GWAS) as input and is robust to sample overlap between studies. Next, I will extend LOGODetect to study cross-ancestry genetic correlation analysis, with application in cross-ancestry polygenic risk prediction.
报告人
侯琳
副教授 清华大学

侯琳,清华大学统计学研究中心副主任、长聘副教授、博士生导师。侯琳博士于2011年获得北京大学统计学博士学位,2012年至2015年在耶鲁大学生物统计系从事研究工作,历任博士后、副研究员,2015年起加入清华大学统计学研究中心。主要从事生物统计、生物信息、统计遗传学等方向的研究。担任中国现场统计研究会计算统计分会常务理事、秘书长;Statistics in Biosciences编委。研究成果发表在Nature Communications, PNAS, Bioinformatics, PLOS Computational Biology等期刊。