[特邀报告]Supervised cell type identification for single cell ATAC-seq data

Supervised cell type identification for single cell ATAC-seq data
特邀报告

报告开始:5月14日 14:00:00 (Asia/Shanghai)

报告时间:20min

所在会议:[S3] 分会场三 [S3-2] 单细胞组学技术开发与应用

摘要
Computational cell type identification (celltyping) is a fundamental step in single-cell omics data analysis. Supervised celltyping methods have gained increasing popularity in single-cell RNA-seq data because of the superior performance and the availability of high-quality reference datasets. Recent technological advances in profiling chromatin accessibility at single-cell resolution (scATAC-seq) have brought new insights to the understanding of epigenetic heterogeneity and gene regulatory mechanism. With continuous accumulation of scATAC-seq datasets, supervised celltyping method specifically designed for scATAC-seq is in urgent need. In this talk, I will present our recent method developments on supervised celltyping for scATAC-seq using scATAC-seq data as reference. We developed Cellcano, a novel computational method based on a two-round supervised learning algorithm. The method alleviates the distributional shift between reference and target data and significantly improves the prediction performance.
报告人
吴浩
教授 中国科学院深圳理工大学

吴浩,国家级海外人才项目获得者,清华大学电机系工学学士学位,约翰霍普金斯大学生物统计学博士学位。博士毕业后即任美国埃默里大学助理教授,直至晋升为终身正教授。目前担任中国科学院深圳理工大学计算机科学与控制工程学院杰出教授及中科院深圳先进技术研究院研究员。研究领域是生物统计及生物信息学,主要聚焦于生物医疗大数据(包括高通量基因组学、电子病历、穿戴设备等)的分析处理算法以及临床诊断应用。至2023年3月,吴博士在国际期刊上共发论文100余篇,其中以第一/通讯作者发表约50篇,包括Nature Methods、Genome Biology、Genome Research、Nucleic Acid Research、Briefings in Bioinformatics、Bioinformatics等顶级杂志。上述研究论文据谷歌学者统计,总引用量约16000次(截止2023年3月),h-index为47。此外,吴博士开发了一系列被广泛应用的开源软件包,包括7个收录于Bioconductor的R语言软件包,每年总下载量超过30000次。