[特邀报告]Network-Guided Sparse Subspace Clustering on Single-Cell Data

Network-Guided Sparse Subspace Clustering on Single-Cell Data
特邀报告

报告开始:5月14日 15:00:00 (Asia/Shanghai)

报告时间:20min

所在会议:[S3] 分会场三 [S3-2] 单细胞组学技术开发与应用

摘要
With the rapid development of single-cell RNA sequencing (scRNA-seq) technology, people are able to investigate gene expression at the individual cell level. Identification of cell types via unsupervised clustering is one of the fundamental issues in analyzing single-cell data. However, due to the high dimensionality of expression profiles, traditional clustering methods are difficult to generate satisfactory results. To address this problem, we designed NetworkSSC, a network-guided sparse subspace clustering (SSC) approach. NetworkSSC is based on a similar assumption in SSC that the expression of cells within the same type lies in the same subspace. Moreover, it integrates an additional regularization term to include the gene network's Laplacian matrix, so as to utilize the functional association between genes. The comparison results of five scRNA-seq datasets show that NetworkSSC outperforms ordinary SSC and other clustering methods in most cases.
报告人
于天维
教授 香港中文大学(深圳)

于天维教授现任香港中文大学(深圳)数据科学学院教授。于教授于1997年毕业于清华大学生物系,2000年获得清华大学生物化学与分子生物学硕士学位,2004年获得加利福尼亚大学洛杉矶分校生物化学与分子生物学硕士学位,并于2005年获得加利福尼亚大学洛杉矶分校的统计学博士学位。 在加入香港中文大学(深圳)之前,于天维教授为埃默里(Emory)大学生物统计学和生物信息学系终身教授。 于天维教授的研究重点集中于生物信息学,统计学与机器学习;其研究兴趣也包括代谢组学,药物基因组学和系统生物学的应用。在他的合作研究中,他致力于环境卫生、病毒学/疫苗学,营养学和癌症研究。